Economic Evaluation of Vaccination for Prevention of Herpes Zoster and Related Complications

Lisa A. Prosser, PhD University of Michigan

Presentation to the Advisory Committee on Immunization Practices October 25th, 2017

Research Team

University of Michigan

- Lisa Prosser, PhD
- Michael Harvey, PhD
- Angela Rose, MPH
- Acham Gebremariam, MS

CDC

- Kathleen Dooling, MD, MPH
- Rafael Harpaz, MD
- Angela Guo, MPH
- Ismael Ortega-Sanchez, PhD
- Fangjun Zhou, PhD

Conflict of interest statement

Authors have no known conflicts of interest.

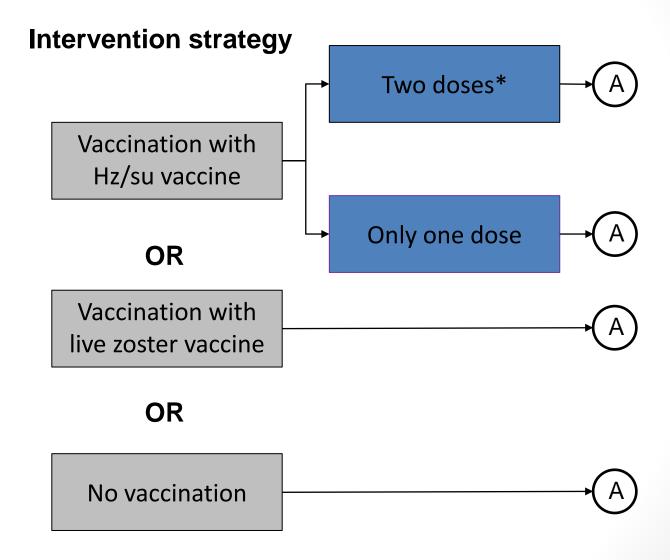
Methods: Study questions

- Evaluate the cost-effectiveness of a herpes zoster subunit vaccine (HZ/su) and no vaccination, using healthcare and societal perspectives
- Examine revaccination scenarios with HZ/su
- Compare cost-effectiveness of HZ/su and ZVL

Methods: Interventions

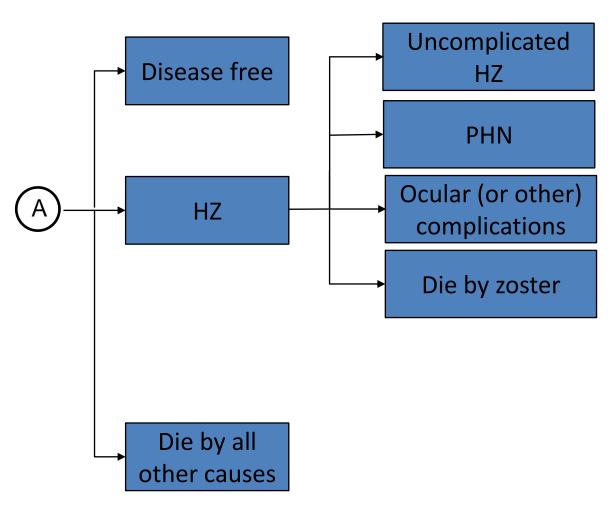
Intervention strategies:

- Herpes zoster subunit vaccine (HZ/su)
- 2. Live zoster vaccine (ZVL)
- No vaccination

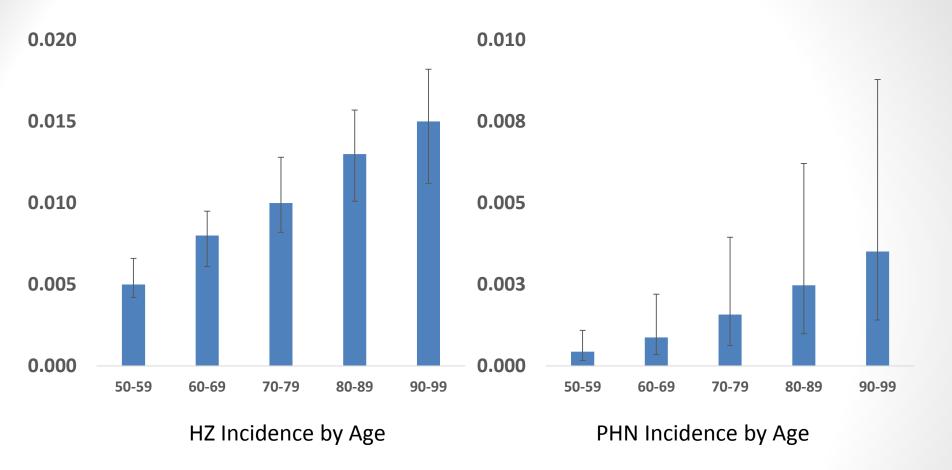

Intervention characteristics:

- 5 age groups: 50-59, 60-69, 70-79, 80-89, 90-99
- Analytic horizon: vaccination age through lifetime
- 100% adherence to 2-dose schedule for HZ/su (base case)

Methods: Economic model

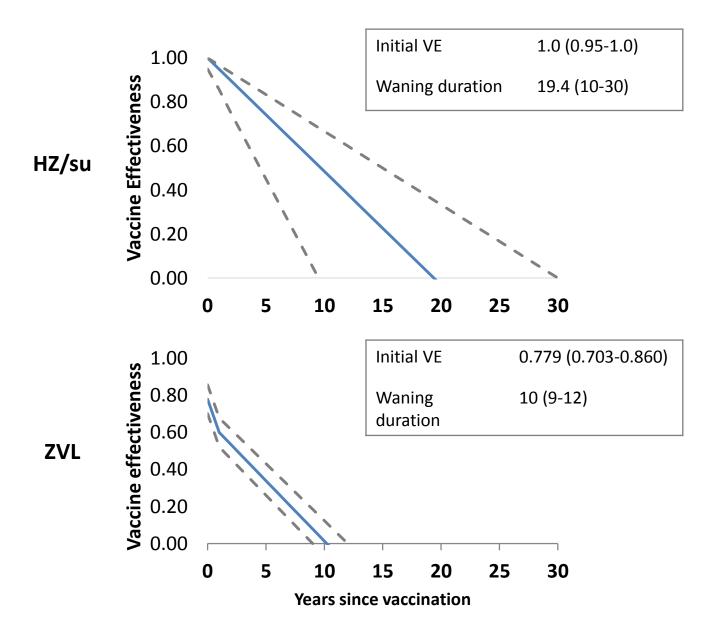

- Model structure: state-transition cohort model
- Primary outcome measure: incremental costeffectiveness ratio (ICER)
- Secondary outcome measures: Disaggregated costs; disaggregated QALYs; number needed to vaccinate
- Cycle length: annual
- Costing year: 2016
- Discount rate: 3%
- Model inputs: published evidence, primary data, expert opinion

Methods: Simulation model


^{*} Base case assumes 100% 2-dose compliance

Methods: Simulation model (2)

^{*}Simulation model also includes vaccination-related adverse events (injection site reaction, systemic reaction, severe adverse event), recurrent zoster


Methods: Epidemiology

Sources:

HZ Incidence- Leung et al 2011, Insigna et al 2005, Donahue et al 1995, Harvey et al. 2016 (unpublished report) PHN Incidence- Hope-Simpson 1975, Cerbian-Cuenca et al 2011, Helgason et al 2000, Yawn et al 2007, Gautheir et al 2009, Stein et al 2009, Gialloreti et al 2010, Harvey et al. 2016 (unpublished report)

Vaccine Effectiveness, 60-69 years

Methods: Vaccine Effectiveness, HZ/su

Variable	Base value	Range	Source
Initial Year, 2 doses			
Age 50-69	1.00	0.95-1	Cunningham et al 2016,
Age 70+	0.97	0.92-1	Lal et al 2015
Initial Year, 1 dose			
Age 50-69	0.90	0.85-0.95	Unpublished post hoc analysis
Age 70+	0.69	0.64-0.74	by GSK from ZOE 50/70
Waning duration, 2 doses (yrs)			
Age 50-69	19.4	10-30	Cunningham et al 2016,
Age 70+	18.8	10-30	Assumption
Waning duration, 1 dose (yrs)			
Age 50-69	11.0	1-17.5	Assumption
Age 70+	4.0	1-13.4	

Methods: Vaccine Effectiveness, ZVL

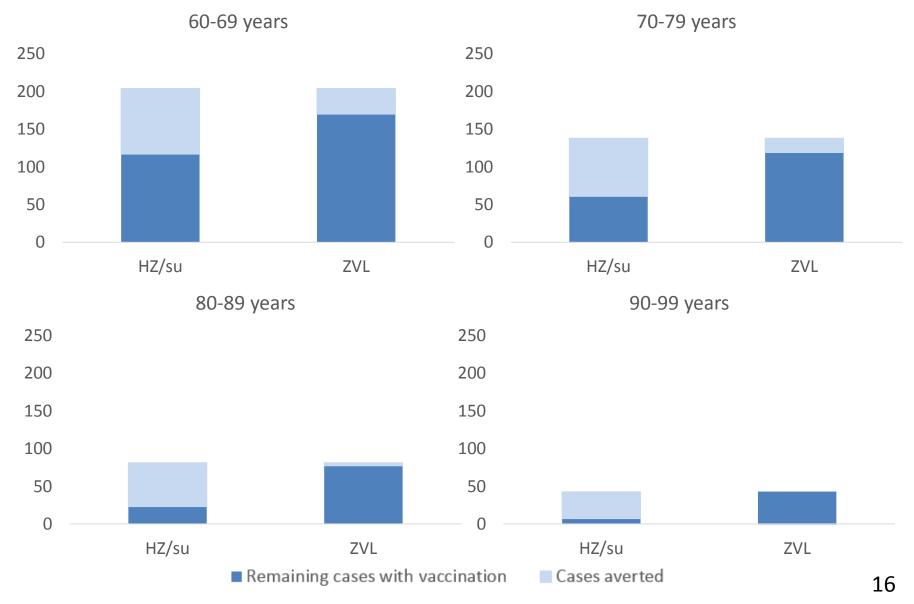
Variable	Base value	Range	Source
Initial year			
Age 50	0.781	0.703-0.860	Morrison et al 2015, Oxman et al
Age 60	0.779	0.701-0.857	2005, Schmader et al 2012,
Age 70	0.659	0.593-0.725	Rohan 2005
Age 80	0.385	0.346-0.423	
Waning duration (yrs)			
Age 50	12	10-15	
Age 60	10	9-12	
Age 70	7	6-8	
Age 80	4	3-5	

^{*}Model assumes additional protection against PHN; protection varies by age

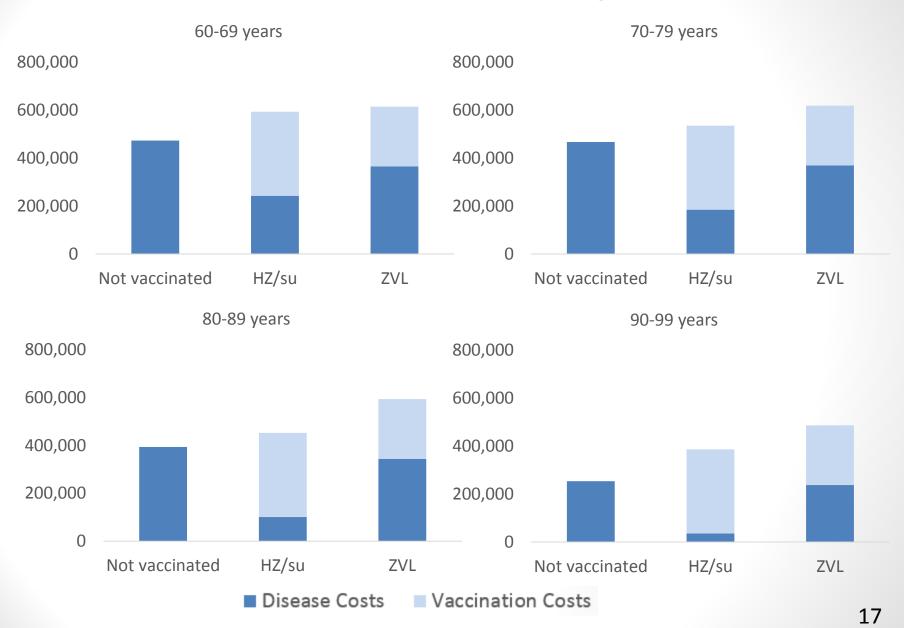
Methods: Additional Inputs

- Direct medical costs
- Productivity losses
- QALY losses
- Vaccination-related costs
- Adverse event costs and QALY losses

Methods: Analysis Plan


Incremental cost-effectiveness ratio (ICER):

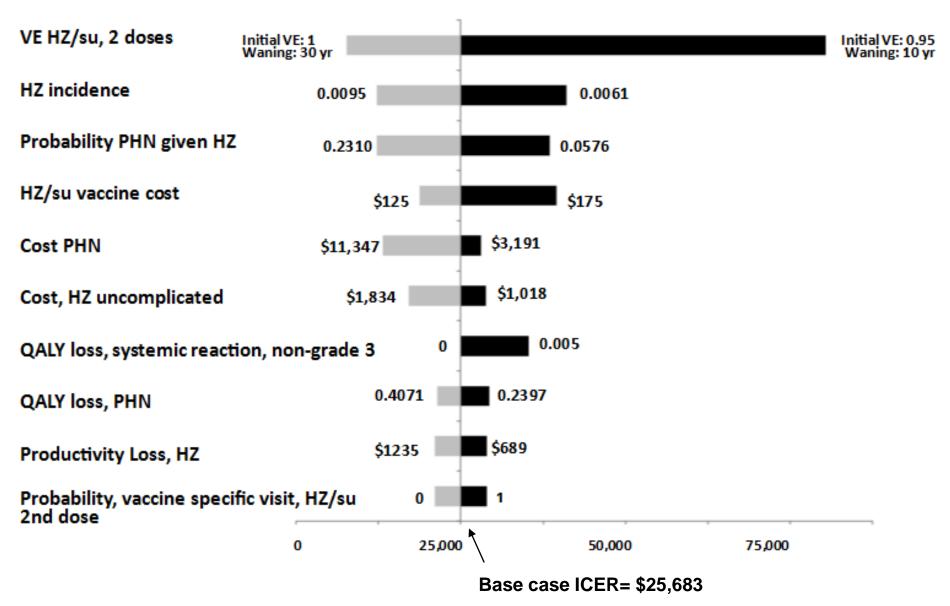
- Healthcare sector and societal perspectives
- Sensitivity analyses:
 - Probabilistic sensitivity analysis
 - Univariate and multi-way sensitivity analyses
 - Scenario analyses:
 - Revaccination with HZ/su following vaccination with ZVL
 - Preferential recommendation


Results: Projected Cases (per 1000)

	No vaccine	Vaccinated- HZ/su	Vaccinated- ZVL
Herpes zoster			
50-59 years	265	186	231
60-69 years	204	117	170
70-79 years	138	61	119
80-89 years	81	23	77
90-99 years	42	7	42
Postherpetic neuralgia			
(PHN)			
50-59 years	32	27	29
60-69 years	31	21	25
70-79 years	27	13	20
80-89 years	21	6	17
90-99 years	14	2	12

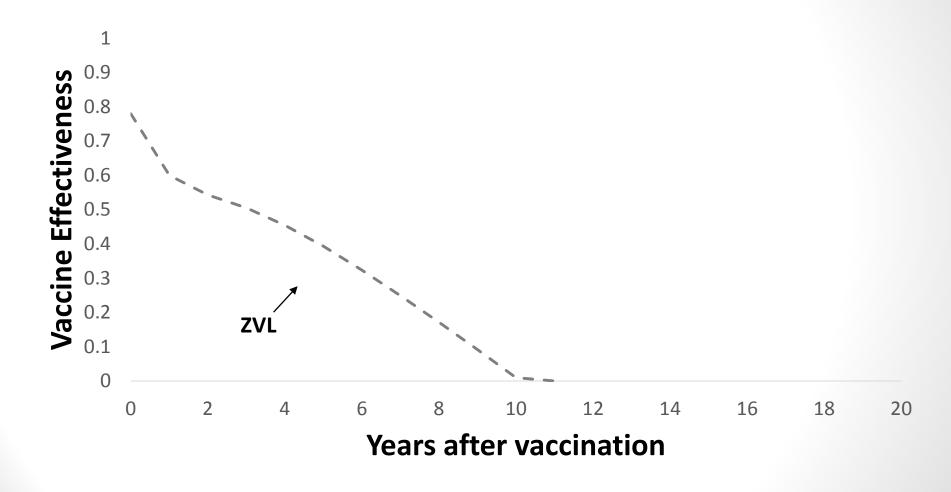
Projected HZ cases and cases averted (per cohort of 1000)

Results: Costs (societal, per 1000)

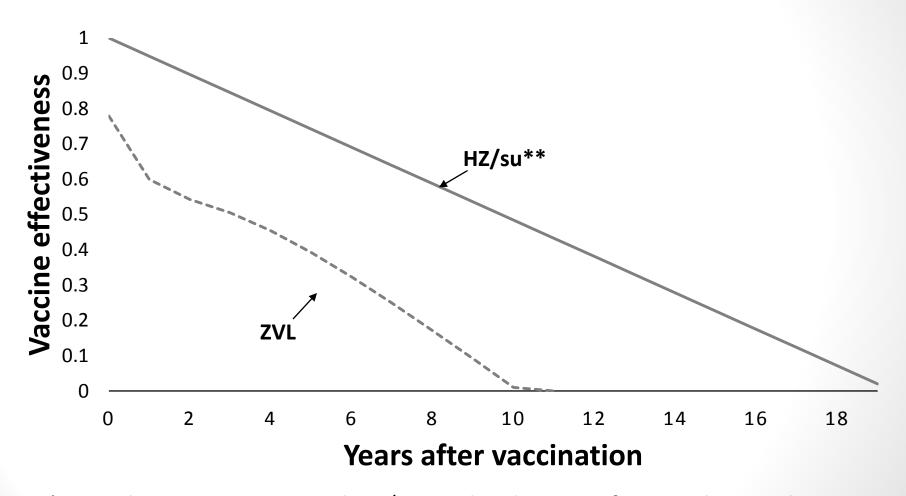


Results: Base Case Analysis, HZ/su vs No Vaccination

Age	Societal Perspective \$/QALY
50-59 y	\$46,824
60-69 y	\$25,683
70-79 y	\$11,561
80-89 y	\$9,739
90-99 y	\$27,310
50+ y	\$30,797

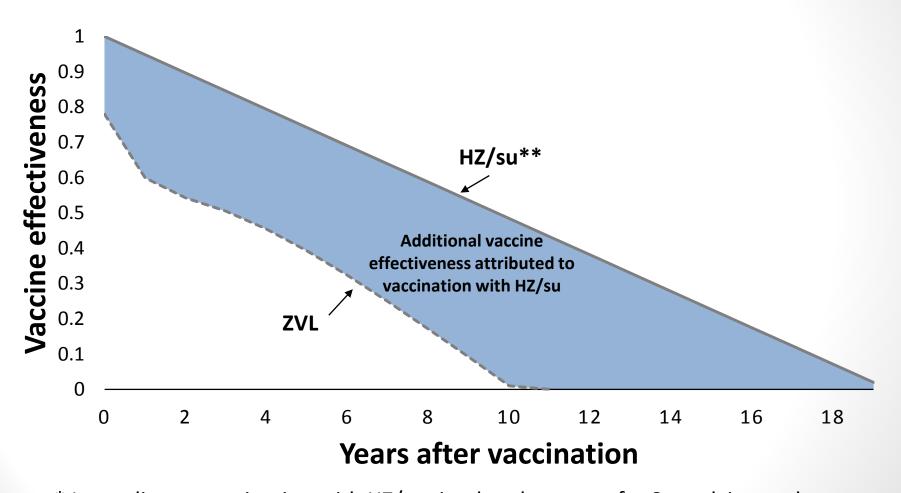

Sensitivity Analyses

One-way Sensitivity Analyses (60-69y)


Scenario Analyses: Revaccination

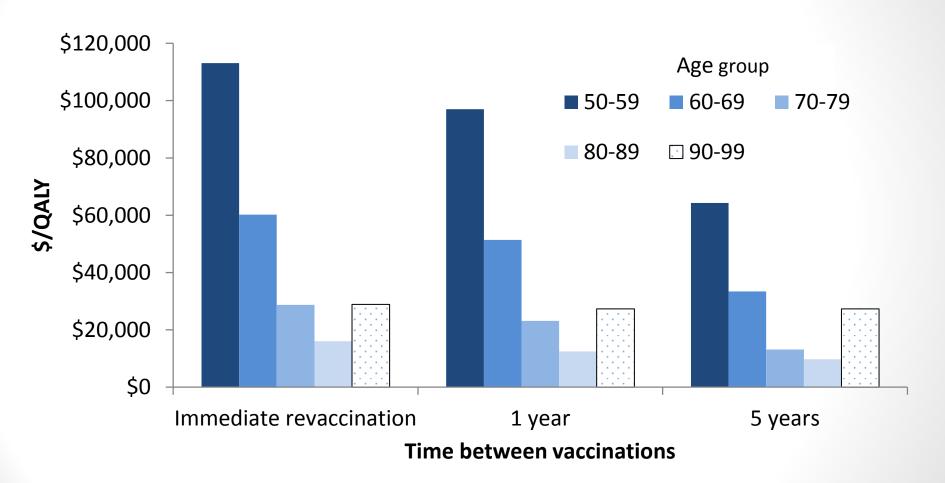
Revaccination – 8wks [Immediately*] VE Assumptions (60-69y)

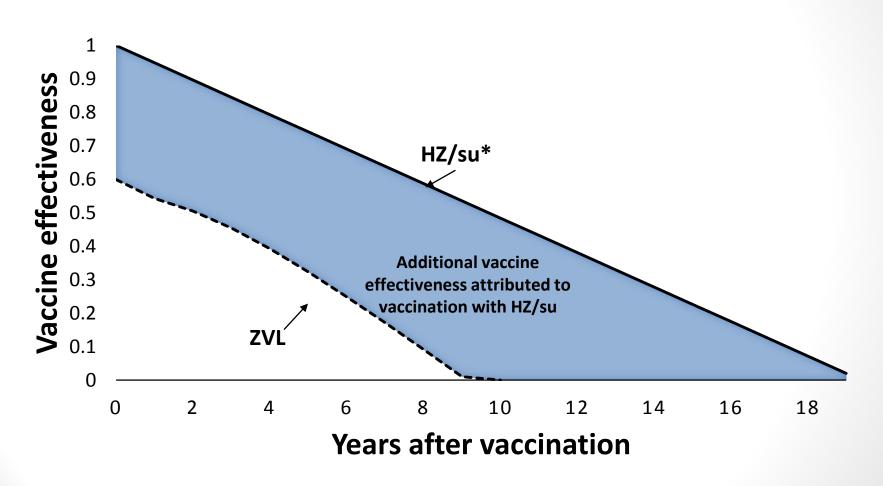
^{*} Immediate revaccination with HZ/su simulated as proxy for 8-week interval


Revaccination – 8wks [Immediately*] VE Assumptions (60-69y)

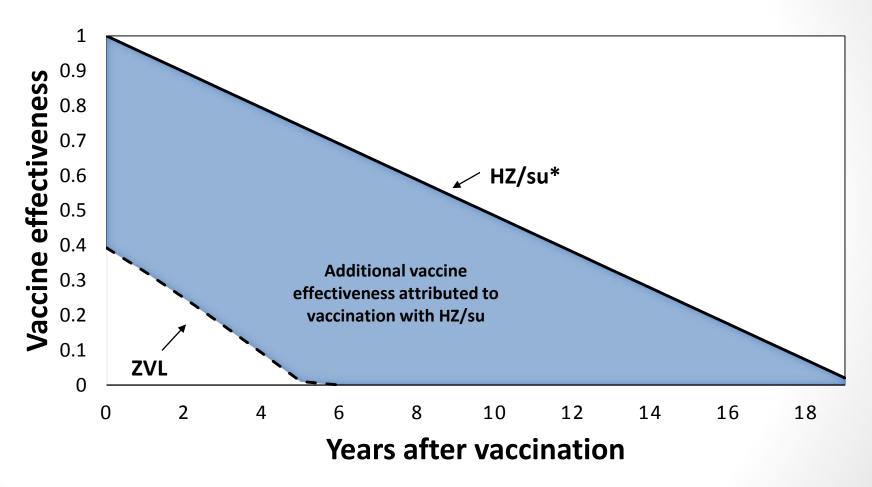
^{*} Immediate revaccination with HZ/su simulated as proxy for 8-week interval

^{**2-} dose efficacy


Revaccination – 8wks [Immediately*] VE Assumptions (60-69y)


^{*} Immediate revaccination with HZ/su simulated as proxy for 8-week interval

^{**2-}dose efficacy


Results: Revaccination Scenario Analysis

Revaccination - 1 year VE Assumptions (60-69y)

Revaccination - 5 years VE Assumptions (60-69y)

*2-dose efficacy

Scenario Analysis: HZ/su and ZVL Compared to No Vaccination

Terminology: Dominance Cost and health outcomes, per 1000

Age	Strategy	Costs	QALYs	Incr. Costs	Incr. QALYs	\$/QALY
	Not vaccinated	\$473,485	12138.8			
60-69 years	Vaccinated- HZ/su	\$593,527	12143.5	\$120,042	4.67	\$25,683
, cars	Vaccinated- ZVL	\$614,476	12141.4	\$20,949	-2.11	Dominated

Comparing Results Across Models Base Case Estimates, 60-69 yrs (\$/QALY)

	CDC model Societal Perspective
HZ/su*	\$26,000
ZVL*	\$55,000

^{*}Compared to no vaccination

Comparing Results Across Models Base Case Estimates, 60-69 yrs (\$/QALY)

	Le et al. model Societal Perspective	CDC model Societal Perspective
HZ/su*	\$30,000	\$26,000
ZVL*	\$67,000	\$55,000

^{*}Compared to no vaccination

Comparing Results Across Models Base Case Estimates, 60+ yrs (\$/QALY)

	Le et al. model Societal Perspective	CDC model Societal Perspective	CDC model Healthcare Perspective	GSK model Healthcare + Prod. Loss	Merck model Healthcare + Prod. Loss
HZ/su*	\$30,000**	\$19,000	\$29,000	\$12,000	\$107,000
ZVL*	\$67,000**	\$80,000	\$89,000	\$120,000	\$83,000

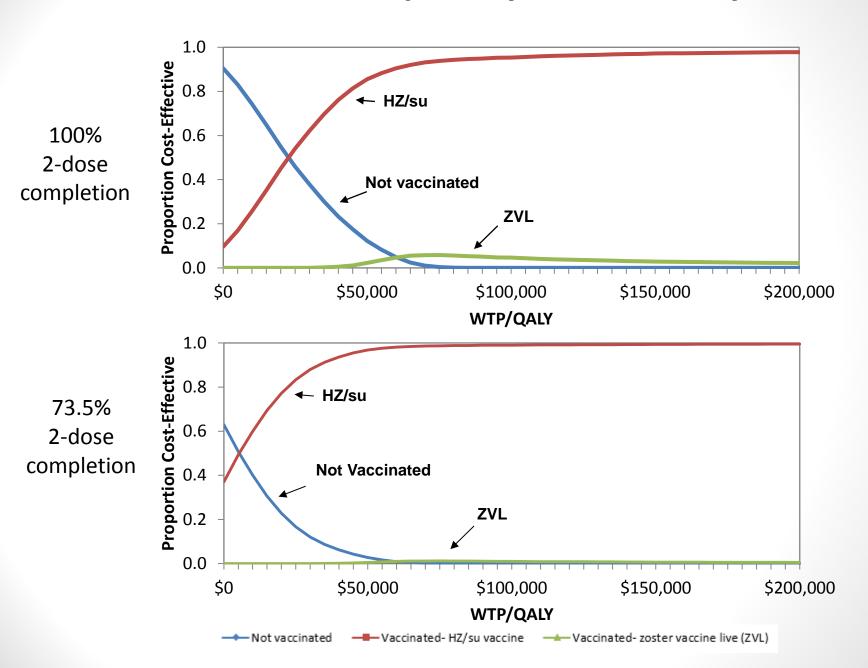
^{*}Compared to no vaccination

^{**}Vaccinated at age 60

Uncertainty Analyses

Uncertainty Analysis: PSA 100% 2-dose completion, \$/QALY (95% CI)

Age	HZ/su vs No vaccination	ZVL vs No vaccination
50-59 y	\$46,824 (CS*- 133,244)	\$85,026 (65,441 - 118,116)
60-69 y	\$25,683 (CS - 74,875)	\$54,920 (39,090 - 78,879)
70-79 y	\$11,561 (CS - 39,954)	\$58,703 (44,556 - 81,773)
80-89 y	\$9,739 (CS - 29,570)	\$137,631 (110,262 - 184,955)
90-99 y	\$27,310 (14,718 - 43,534)	\$364,224 (285,501 - 494,097)


^{*}Cost saving

Uncertainty Analysis: PSA 73.5% 2-dose completion, \$/QALY (95% CI)

Age	HZ/su* 100% 2-dose completion	HZ/su * 73.5% 2-dose completion	ZVL*
50-59 y	\$46,824	\$40,662	\$85,026
	(CS**- 133,244)	(CS* - 90,254)	(65,441 - 118,116)
60-69 y	\$25,683	\$21,773	\$54,920
	(CS - 74,875)	(CS – 52,548)	(39,090 - 78,879)
70-79 y	\$11,561	\$14,208	\$58,703
	(CS - 39,954)	(CS - 37,978)	(44,556 - 81,773)
80-89 y	\$9,739 (CS - 29,570)	\$12,119 (CS – 30,208)	\$137,631 (110,262 - 184,955)
90-99 y	\$27,310	\$27,669	\$364,224
	(14,718 - 43,534)	(9,992 – 44,364)	(285,501 - 494,097)

^{*} vs no vaccination; **Cost saving

Results: C/E Acceptability Curves, 60-69 years

Multi-Way Sensitivity Analysis: HZ/su 2-Dose Completion Rate, 1-dose Vaccine Waning Duration, Initial Efficacy

Age	1-dose lower bound initial VE; Waning duration= 1 yr 2-dose completion rate 20% 50% 100%					
60-69 y	\$46,171	\$35,450	\$25,683			
70-79 y	\$36,194	\$22,681	\$11,561			
80-89 y	\$41,959	\$22,872	\$9,739			
90-99 y	\$61,059	\$40,938	\$27,310			

Multi-Way Sensitivity Analysis: HZ/su 2-Dose Completion Rate, Vaccine Waning Duration, Initial Efficacy

	1-dose initial VE=0.85; waning 1 y 2-dose initial VE=0.95; waning 10 y			1-dose initial VE=0.95; waning 17.5 y 2-dose initial VE=1.0; waning 30 y		
Age	2-do	se completion	rate	2-do	se completion	rate
	20%	50%	100%	20% 50% 100		
60-69 y	\$64,171	\$54,920*	\$569,324**	Cost Saving	\$403	\$7,902
	1-dose initial VE=0.64; waning 1 y			1-dose initial VE=0.74; waning 13.4 y		
Age	2-dose init	ial VE=0.92; w	aning 10 y	2-dose initial VE=1.0; waning 30 y		
70-79 y	\$51,493	\$49,865	\$48,050***	Cost Saving	Cost Saving	Cost Saving
80-89 y	\$57,244 \$44,879 \$34,505		Cost Saving	Cost Saving	\$2,212	
90-99 y	\$70,968	\$54,681	\$42,465	\$6,902	\$13,564	\$21,971

^{*} ZVL dominates HZ/su; ** No dominant strategy; *** HZ/su dominates ZVL by extended dominance

Limitations

- Adverse event data
- Healthcare utilization associated with adverse events
- Long-term effectiveness of vaccination
- Proportion of individuals completing 2-dose series
- Healthcare utilization associated with 2nd dose

Summary

- Results vary by age at vaccination
- Most sensitive to changes in:
 - Duration of VE
 - Incidence of HZ, PHN
 - Cost of HZ, PHN episode
- Differences across models
 - Time costs
 - Incidence of PHN by age
 - Vaccine effectiveness
 - 2-dose completion